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Abstract

Robot journalism is an upcoming field that allows journalists to automate the process of writing
simple reports of sports matches, finance or weather. Neural language models have the potential
of being more diverse and less expensive than current template-based approaches. Fine-tuning
large language models is memory-intensive and di�cult for low-resource languages. In this
work we show that prefix-tuning can e�ciently be used for adapting a language model in
a multilingual data-to-text setting, specifically in low-resource scenarios. We then propose
language control prefixes as a more e↵ective way of e�ciently learning a prefix by enabling
learning from language-agnostic features.
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Chapter 1

Introduction

“If you want creative workers, give them enough time to play.” - John Cleese

1.1 Robot journalism

Over the past years, more and more news publishers have employed software-based ‘robot
journalists’. Human editors usually prefer spending time on unique stories that require human
interaction or research. Robot journalists on the other hand, are able to write massive amounts
of simple stories in a short period of time. By creating pipelines to automatically write simple
reports, humans are enabled to spend more time doing creative work. The Washington Post
introduced a system that is able to write simple pieces on sports and politics based on structured
data. The commercial developments of the relatively simple technology behind robot journalism
also paved the way for smaller publishers. For example, the Dutch Dagblad van het Noorden
uses software to report on all amateur soccer games in their region.

This thesis is written for DPG Media, the largest media publisher in the Netherlands and
one of the largest in Belgium. DPG Media publishes traditional newspapers like De Volkskrant,
AD and Trouw. The company also owns news platforms like Nu.nl and video streaming sites
such as VTM Go. Throughout DPG Media, people are looking into employing software to
automate parts of the news publication process. This is done through academic research as
well as employing existing solutions for products owned by the company. This thesis is an
example of the former, introducing novel contributions to the field of robot journalism while
staying relevant to the vision of DPG Media.

1.2 Templating and language modelling

The current state-of-the-art robot journalism systems are based on templating. Templates
consist of sets of sentences with gaps that are filled based on structured data. By selecting
what sentences are relevant based on certain data, a story is generated. This approach is an
extremely simple but reliable way of news generation [31]. However, it is labour intensive
to create templates for di↵erent domains and languages. Additionally, resulting stories will
always be limited in diversity, again relying on human input to come up with new sentences or
structures.

Employing language models (LMs) is one of the main proposed alternatives to templating.
By automatically learning from existing data, the problems of diversity and expensive labour are
potentially solved. Neural language models have recently gained widespread attention because
of their promising results. Models with a Transformer architecture like GPT-3 by OpenAI [4]
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and T5 by Google [28] have shown excellent performance at tasks like summarization, text
classification or question-answering. These models are able to solve complex language-related
problems without any sort of fine-tuning or adapting the model to the task at hand. However,
they have shown limited capabilities for the data-to-text task [18], which is necessary to write
news based on structured data.

Data-to-text generation requires a data structure as input and then generates a story based
on its content. For news generation, it is very important that the resulting generations are
truthful. The output should contain as much information as possible that is present in the
input data, while at the same time not generating anything that is not mentioned. Large
neural language models struggle with both of these problems, especially when used without
adapting the model to the task at hand. Fine-tuning a large pre-trained LM like GPT-3 or T5
is necessary to optimize the model as much as possible for the data-to-text task.

1.3 E�cient fine-tuning of pre-trained language models

When fine-tuning an LM for a task in a specific language, all parameters are updated and
stored. With the increasing accessibility of deploying large LMs, the amount of storage and
computational power necessary can quickly become extremely high. Fine-tuning multiple mod-
els for slightly di↵erent tasks, domains or languages can have large e↵ects on costs and the
environment [11].

Researchers have recently introduced more e�cient ways of fine-tuning large pre-trained
LMs. Three examples are adapter tuning [25], masking [36] and prefix-tuning [18]. From these
methods, prefix-tuning has shown the most promising results in terms of both performance and
e�ciency.

Prefix-tuning essentially learns a continuous prefix that is prependend to the original data
input. The technique uses only 0.1% of the parameters required to fine-tune an entire LM while
having similar performance [18]. Upon training time, only the prefix is updated and all LM
parameters are kept frozen.

1.4 Multilingual prefix-tuning

Following the release of large pre-trained LMs, researchers have extended the concept to a
multilingual setting. This means that LMs are not only pre-trained on a single, but on multiple
languages. For example mT5 [35] is an instance of T5 [28] but trained on a dataset with over
100 languages. These developments allow for applications and research in multiple languages,
especially ones with limited available resources [22].

Multilingual models contain knowledge of multiple languages without significantly more
parameters compared to models trained on only a single language. Our hypothesis is that this
could have negative e↵ects on e�cient fine-tuning approaches including prefix-tuning. Prefix-
tuning in a multilingual setting has already shown to perform well on some tasks [37]. In this
thesis we extend the research on multilingual prefix-tuning to a data-to-text task. We compare
the method to normal fine-tuning but also introduce a novel way of prefix-tuning called language
control prefixes.
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Chapter 2

Contributions

To e�ciently deploy robot journalists based on neural language models in real world scenarios
it is important that LMs are easily transferable between languages and domains. Prefix-tuning
enables this e�cient transfer between domains as shown by Li et al [18]. A solution to e�-
ciently switching between di↵erent languages is employing prefix-tuning in combination with
a multilingual LM. Zhao et al. [37] introduced multilingual prefix-tuning for some tasks such
as natural language inference and question answering. In this thesis, we introduce multilingual
prefix-tuning for data-to-text generation and compare it to fine-tuning an LM. If a prefix can be
used in combination with di↵erent languages, this drastically decreases training time, costs and
environmental impact when deploying a data-to-text model. We answer the following research
question:

RQ1. Can prefix-tuning be used as an alternative to fine-tuning an entire multilin-
gual LM for data-to-text generation?

In this thesis we use mT5 as a multilingual LM. mT5 is a text-to-text language model
pre-trained on more than 100 languages and containing more than 580 million parameters.
Fine-tuning such a large multilingual LM requires enough data to be available in the target
language and task. Domain and language specific data is often limited and expensive to create.
An example in the DPG Media case might be creating a model for reporting soccer matches in
the Dutch language. Without any existing dataset, this would require DPG Media to manually
annotate thousands of samples. Li et al. [18] have shown that prefix-tuning can outperform
regular fine-tuning in English low-resource scenarios. In this thesis we experiment with multi-
lingual prefix-tuning in low-resource settings for the data-to-text task. We do this by answering
the following research question:

RQ2. How does prefix-tuning perform compared to fine-tuning on a data-to-text
task in multilingual low-resource scenarios?

Prefix-tuning as introduced by Li et al.[18] does not condition on any sample-specific at-
tributes but uses the same prefix for all samples from a particular dataset. Following on this
approach, Clive et al. [18] introduced a prefix that can condition on specific sample attributes.
This method, called control prefixes, takes a set of categories and values from an input sample
and uses those to construct a prefix. An example here might be a data structure describing a
women’s tennis match. ‘Women’ and ‘tennis’ can be attributes to condition the prefix on.

In this thesis we take the concept of control prefixes and modify it to condition on languages
instead of sample attributes. We call this method language control prefixes. By creating a
continuous prefix that is partly language-agnostic and partly conditioned on the processed
language we hope to create a single prefix that is able to process multiple languages. Language
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control prefixes would allow for more e�cient cross-lingual training compared to ‘regular’ prefix-
tuning as introduced by Li et al [18]. This is the case as language control prefixes would require
only a single prefix to be trained for multiple languages. Furthermore, language control prefixes
might allow for a performance increase in low-resource settings. We hypothesize this because
language-specific prefixes from low-resource languages can benefit from a language agnostic
prefix that is trained on the same task. We answer the following questions:

RQ3a. To what extent can language control prefixes be used as a parameter-e�cient
alternative to general prefix-tuning?

RQ3b. To what extent can using language control prefixes lead to an increase in
performance in low-resource scenarios compared to general prefix-tuning?

The di↵erent approaches are visualised in Figure 2.1. As can be seen at the top, fine-tuning
requires all LM parameters to be updated. In combination with a discrete prefix, multiple tasks
and languages can be learned by using a single LM. However, the number of parameters is still
two orders of magnitude higher than prefix-tuning. Prefix-tuning is visualised in the second
row of Figure 2.1. By training a single prefix for a task-language combination, the Transformer
model can be e�ciently modified. In combination with a discrete prompt a single prefix can
be trained for multiple tasks or languages. This approach is called mixed prefix-tuning and
is shown in the third row. Lastly, at the bottom of Figure 2.1, the language control prefixes
method is visualised. The prefix is split in a language-agnostic part and a language-specific
part. The amount of parameters is similar to prefix-tuning, but becomes lower when only a
single language-agnostic prefix is necessary for performing a single task in multiple languages.
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Figure 2.1: Visualisation of four parameter tuning techniques. Firstly there is fine-tuning,
where all parameters of a large Transformer LM are updated. Secondly, prefix-tuning updates
a task- and language-specific prefix while keeping all LM parameters frozen. Mixed prefix-
tuning combines regular prefix-tuning with a discrete prompt, allowing a single prefix to learn
a task in multiple languages. Lastly there is the language control prefixes approach, updating
both a general task prefix and a language-specific prefix.
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Chapter 3

Related work

3.1 Robot Journalism

In the past decade, software-generated news has slowly found its way into the lives of news
editors all around the world. Commonly referred to as ‘robot journalism’, these pieces of
software take structured data and generate a smooth piece of text. Examples of structured
data are sports statistics, stock exchange rates or real estate prices [19].

The Washington Post developed their own framework for automated journalism called He-
liograf. The system first appeared during the 2016 Olympics in Rio de Janeiro. Heliograf got
tasked with writing short updates on the Olympics using data from Sports.com. The system
was deployed on a liveblog as well as on Twitter and produced multi-sentence updates. Fig-
ure 3.1 shows two examples of such tweets. The Washington post expanded their system in the
following years. Another example of its application were the 2020 elections where Heliograf was
able to give updates on regional results as soon as the data was available. Other big publishers
have also implemented AI-journalists in the previous years. Bloomberg has Cyborg, Forbes uses
Bertie and Reuters, the Associated Press and The Guardian all have their own version of an
automated reporter as well.

Figure 3.1: Two tweets written by robot reporter Heliograf from The Washington Post about
the Olympic Games in Rio de Janeiro in 2016.

Fortunately, robot journalism is no longer limited to large publishers. A local newspaper in
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the Netherlands, Dagblad van het Noorden, recently implemented a system for automated jour-
nalism. The software reports on all amateur sports matches in the region using an automated
system based on match statistics. A human editor checks the generated piece and optionally
adds relevant information before publishing. DPG Media, the company this thesis was writ-
ten at, is currently experimenting with the automation of writing news articles. DPG Media
owned websites like In de Buurt provide very local news and could benefit from generating
simple articles automatically.

All publishers mentioned in the previous paragraphs have implemented robot journalism in
one way or another. To our knowledge all of these implementations use a rule-based approach
for generating text. An example of this approach is PASS, a Dutch data-to-text system for
soccer [31]. PASS takes data from Goal.com and article templates from the MeMo FC corpus
[3], a corpus which consists of pairs of soccer reports. Sentences from the MeMo FC corpus
are selected and matched to relevant data from Goal.com. After manual editing, the resulting
sentences can be used to report on arbitrary soccer matches when linked to the matching
statistics. These sentence templates are then combined into a tree structure, resulting in a
ready-to-publish news article.

These template-based methods are the current state of the art in production environments
at news publishers. The final output of such systems is very predictable and possible errors are
easy to fix. Based on qualitative studies, the resulting texts are often very much appreciated
by readers [31]. However, templates are extremely limited in their expressivity. Articles often
look really alike and use the same structure for their sentences. The only way to diversify
in this framework is to include more templates, which is expensive manual work. On top of
this, transferring a template database to a new domain often means starting from scratch. For
example, almost no sentences from the ‘soccer’ domain can be used in the context of ‘tennis’.

A solution to the problems of limited diversity and expensive manual work is to utilize
neural language models. These language models can learn the task of data-to-text generation
by taking advantage of the huge amounts of data available in relevant domains. This approach
nullifies the need to manually construct sentence templates. Since 2014, various neural encoder-
decoder models have been proposed that learn how to map input text to output text [9]. In
the next section we introduce the most prominent of these language models and explain the
challenges encountered in the process of replacing rule-based methods for robot journalism.

3.2 Neural Language Modelling

Language models learn a probability distribution over sequences of words. This way, based on
a given sequence of words, the most likely next word can be predicted. Originally, most of these
methods were count-based. By simply counting how often words occur together in a certain
dataset, one can calculate the probability of certain sequences. More modern approaches use
neural networks to compute contextual word embeddings for words and use these to predict
the next most likely one.

The recurrent neural network (RNN) was introduced in 1986 by David Rumelhart [29].
This RNN could process sequential data unlike multilayer perceptrons (MLPs) that only work
with data where order is of no importance. However, the first RNNs struggled with processing
long-term dependencies. In 1997, Hochreiter et al. [13] introduced the LSTM network solving
this problem and accelerating the development of sequential networks.

In years that followed, the LSTM was the state of the art for sequential modelling. Tasks
like machine translation or text classification were all approached by utilizing an LSTM-related
model. In 2017, Vaswani et al. [32] showed that ‘attention is all you need’ when processing
sequential data, introducing the Transformer model. The Transformer uses an attention mech-
anism to capture the order of the input sequence, and does not need to process the tokens one
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by one. For this reason, Transformer models allow for parallel processing of sequences enabling
extremely e�cient training compared to RNN or LSTM models.

The introduction of the Transformer gave rise a new type of learning for language models.
In 2018, Radford et al. [26] introduced the GPT language model. This Generative Pre-trained
Transformer is trained without supervision resulting in a general purpose language model. The
pre-training happens using a masked language modeling objective. By adapting the model
for a specific task after pre-training, the authors were able to achieve state-of-the-art (SOTA)
results on tasks ranging from question answering to text classification. The year after, a scaled-
up version of the GPT model was released, with a ten-fold increase in both parameters and
training data. This model was called GPT-2 [27].

Adapting a pre-trained LM such as GPT-2 for a specific task is called fine-tuning. Fine-
tuning a model means that an end-to-end task is performed using the original pre-trained
parameters. These parameters of the model are then updated using gradient descent. One can
decide to update only a part of the original parameters or introduce some new ones while keeping
the original ones frozen. An example of this is prefix-tuning, at the core of thesis. By fine-
tuning instead of training a model from scratch, training time and computational requirements
are reduced drastically while achieving SOTA performance [26].

After the release of GPT, researchers embraced the approach of training general purpose
language representation models. BERT is another example of a highly influential pre-trained
Transformer [8] that trains bidirectional representations. Another iteration of this pre-training
approach is BART, which focuses on sequence-to-sequence modeling by generalizing the findings
of BERT and GPT [17].

The most recent examples of pre-trained language models are GPT-3 and T5 [4][28]. The
model weights behind GPT-3 are not yet made public, keeping us from using the model in
this thesis. As Google’s T5 model achieves state-of-the-art performance on most language
generation tasks, our research focuses on this LM.

3.3 Multilingual Language Modelling

The rise of models like GPT and BERT led to researchers pre-training Transformers on di↵erent
languages than just English. Examples are CamemBERT (French) [21] or BERTje (Dutch) [7].
However, training these large language models requires the availability of enough data and
computational resources. For this reason, the introduction of pre-trained LMs has had the
undesired e↵ect of limiting the research in NLP to English or other high resource languages
[15].

A more general solution towards training models for multiple languages is to pre-train a
single model on multiple languages. An example is mBERT [34], a multilingual version of BERT
trained on the top 100 languages with the largest Wikipedias. One of the main motivations of
training such a multilingual model is to enable transfer learning from one language to another.
This concept finds its foundation in the hypothesis that low-resource languages can benefit from
high-resource ones due to shared vocabulary, genetic relatedness [22] or contact relatedness [12].

The multilingual version of T5 is called mT5 and was introduced in 2020 [35]. mT5 inherits
all characteristics of T5, but is trained on a multilingual variant of T5’s dataset, mC4. Multi-
lingual C4 consists of natural text in 101 languages from the Common Crawl web scrape. In
this thesis, mT5 is the main language model used for experimentation. In recent months, mT5
has been the standard model for multilingual sequence-to-sequence modelling. As competing
models like GPT-3 are not yet openly available, mT5 is the main language model used for
experimentation in this thesis.
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3.4 Lightweight fine-tuning

Fine-tuning pre-trained language models has shown great performance on a wide range of NLP
tasks. However, as more downstream tasks are defined, fine-tuning becomes ine�cient. For
example, in cloud environments it has become easy for anyone to initialize a LM and fine-tune
it on a downstream task. As the number of parameters in modern language models is huge,
storing a separate copy for each downstream task is very space intensive, resulting in high
energy consumption and costs [11]. For this reason, researchers have developed several ways
of adapting pre-trained language models for a specific task without the necessity to store and
update all parameters.

An example of this parameter-e�cient tuning of language models, is adapter tuning [14].
Adapters are modules added between layers of a pre-trained Transformer. These adapters
are optimized through gradient descent on a downstream task. In the training process, all
original model weights are kept frozen resulting in a factor-10 decrease in learnable parameters.
While only adding 3.6% parameters per task compared to fine-tuning the entire model, adapter
tuning is able to perform almost as good on a wide variety of tasks [18]. A similar approach
to adapter tuning is parameter masking. This method learns what task-specific subset of the
LM’s parameters should be frozen when fine-tuning [36].

Modern language models like GPT-3 [4] can sometimes even be deployed without any type
of fine-tuning. Users can simply prepend a prompt to their input sequence (e.g. TL;DR for
summarization) together with a few examples of the task the model is supposed to complete.
This process is called prompt-engineering and only requires a manual process of trial-and-error
and a negligible amount of space. Although this approach works excellent for numerous tasks,
it seems to fail at some tasks like data-to-text [16]. An explanation for this might be that an
LM needs to be familiar with the structure of the input. For data-to-text, this input can be of
a highly specfic and complex structure.

3.5 Prefix-tuning

Another example of lightweight fine-tuning is prefix-tuning. Introduced by Li et al. [18] in
2021, this technique learns a continuous embedding that is prepended to the original input
sequence. State-of-the-art language models take a series of input IDs. Each ID stands for a
token that is present in the input sequence. The model then encodes this vector of IDs into an
embedding that represents meaning in the context of the input sequence. Prefix-tuning learns
continuous embeddings that are virtual tokens added to the front of the original token input
sequence.

Prefixes are learned without conditioning on any part of the input data. This way, a single
prefix is learned for the entire task that needs to be performed. A single weight matrix is
updated through gradient descent while performing an end-to-end task. This weight matrix
can then generate the prefix. As the weight matrix is the same for the entire task, the prefix
stays fixed upon inference time, and no additional computations are necessary to generate it.

The original prefix-tuning paper learns a prefix based on a task. However, there have been
attempts to condition the prefix on input-specific data. Clive et al. [6] have introduced control
prefixes, allowing a part of the prefix to be conditioned on input-metadata. By introducing a
weight matrix that is conditioned on part of the input sequence and adding it to a more general
prefix, control prefixes have more control over the generation process.
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3.6 Prefix-tuning for multilingual models

In the months leading up to this thesis, multiple papers were published that focus on fine-tuning
multilingual models using prefixes. Fu et al. [10] introduced PolyPrompt, a framework that
uses prompts in combination with a multilingual pre-trained model to perform multiple tasks
in multiple languages. This framework completely relies on fine-tuning the original model with
discrete tokens as prompt.

Wang et al. [33] introduced Unified Prompt Tuning for Text Classification. This framework
tries to capture task-invariant prompting knowledge by learning from a wide variety of tasks.
They do this by defining templates and learning what words are used in those templates to
optimize performance.

Our approach focuses on optimizing a continuous prefix, rather than learning a discrete
prompt. Zhao et al. [37] developed a method that extends on the original prefix-tuning paper
[18]. By experimenting with discrete, soft and mixed prompts, the authors conclude that
using prompts in multilingual setting outperforms fine-tuning an XLM-RoBERTa model at the
natural language inference task. From all recent prefix-related papers, the research from Zhao
et al. [37] is closest to our approach. However, we apply prefix-tuning in the context of data-
to-text generation instead of natural language inference. On top of this, we introduce language
control prefixes as a more e↵ective way of multilingual prefix-tuning.
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Chapter 4

Prefix-tuning methods

In this section we firstly explain the inner workings of the fine-tuning and prefix-tuning methods
that we use in our experiments. Then we introduce language control prefixes as a novel way of
learning a multilingual prefix.

4.1 Multilingual Fine-tuning

Assume that we have a multilingual language model with an encoder-decoder architecture such
as mT5 [35]. All parameters are initialized through the pre-training phase. Fine-tuning this
model for the data-to-text task would mean updating the parameters through optimizing a
log-likelihood objective using gradient descent:

max
�

log p�(y|x) =
X

i2Yidx

log p�(zi|h<i)

Here x and y are the tokenized input and output sequences respectively. � are the model
parameters and Yidx are the indices corresponding to the output sequence y. The activation
at time step i is defined as hi, computed by the bidirectional Transformer encoder. z is the
concatenation of x and y. Intuitively this means that that y is predicted autoregressively,
conditioned on x and y’s left context.

Visualised at the top of Figure 2.1, fine-tuning a Transformer model requires updating all
of the pre-trained parameters for each new task and language. Alternatively, a single multi-
lingual LM could be fine-tuned for multiple tasks and languages by using discrete prompts.
For example, prepending either ‘Translate from Data to English’ or ‘Translate from Data to
Russian’ could di↵erentiate between the two di↵erent languages inside a single model. Using
discrete prompts in combination with task-specific data in a certain language enables steering
the output of a language model.

Some recent models learned the meaning of di↵erent prompts in their pre-training phase.
For example, GPT-3 interprets the prompt ‘TL;DR’ in such a way that it summarizes the
text that follows without fine-tuning [4]. This technique is called zero-shot prompting. Zero-
shot prompting is highly model- and prompt-specific and does not apply to our data-to-text
generation task. mT5 was not pre-trained on any specific generation task, making it challenging
to generate anything sensible in our desired setting without fine-tuning. On top of this, even
models that do support zero-shot prompting like GPT-3 have trouble performing the data-to-
text task without fine-tuning [18].
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4.2 Multilingual Prefix-tuning

Discrete prompts are limited in expressivity. While easily understandable for a human, lan-
guage models might have problems interpreting more complex prompts. Prefix-tuning takes
the idea of discrete prompts and casts it to a continuous optimization problem [18]. Instead
of using discrete tokens, the prompt exists of continuous embedding vectors. These continuous
‘tokens’ are propagated through the network’s activation functions and influence the processing
of subsequent actual tokens in the input sequence. These continuous prefixes are so expressive
that optimizing them can achieve SOTA performance on a wide variety of tasks without having
to optimize the actual model parameters [18].

For an encoder-decoder model like mT5, prefix-tuning appends continuous prefixes for both
the encoder and decoder resulting in z = [Prefix; x; Prefix’; y] [35]. A prefix is generated
through a single parameter matrix P✓. The dimensions of this matrix are |Pidx| ⇥ dim(hi).
|Pidx| denotes the length of the prefix and dim(hi) is the dimensionality of the hidden states.
The parameter matrix of the prefix is treated as a multilayer perception (MLP) and optimized
using gradient descent while performing the language generation task. During this process, the
parameters of the mT5 language model are frozen and only the MLP that generated the prefix
embeddings is updated.

As the prefix parameter matrix is not conditioned on any part of the input, a single prefix is
trained for each task. In the original prefix-tuning paper [18], this is only done for English tasks.
We extend this concept to a multilingual model where a prefix is trained for a specific language
and task, similar to the approach taken by Zhao et al. [37]. Training a prefix while keeping
all LM parameters frozen only requires updating around 0.1% of the parameters needed for
fine-tuning as Table 5.3 shows. Each task-language combination requires learning a separate
prefix while keeping the main Transformer model frozen, as visualised in the middle row of
Figure 2.1.

4.3 Mixed prefix-tuning

By combining the tuned continuous prefix with a discrete prompt, we also investigate the
possibility of tuning a single prefix for multiple languages. This mixed prefix-tuning approach
does not only prepend a continuous prefix, but also adds a discrete prompt like ‘Data to
English’ to the input sequence. This way, our model can use a single prefix to perform a
single task in di↵erent languages similarly to using prompts when fine-tuning. For example,
tuning a prefix with discrete prompts ‘Data to Dutch’ and ‘Data to English’ allows it to handle
a task in both languages. By specifying the target language through the discrete part of the
prefix, fewer parameters are necessary compared to tuning an new prefix for each task-language
combination. Mixed prefix-tuning also enables a prefix to learn language-agnostic information
from both languages, possibly increasing performance.

Table 5.3 shows the number of parameters used for mixed prefix-tuning for our particular
setup. The middle row of Figure 2.1 shows a general overview of multilingual prefix-tuning.
The Transformer model parameters are kept frozen while a prefix is learned for each task-
language combination. When using mixed-prefix tuning, the continuous prefix is combined
with a discrete prefix to learn

4.4 Language control prefixes

Completely new to our approach is the introduction of language control prefixes. Control pre-
fixes were originally introduced by Clive et al. in 2021 [6]. The concept iterates on prefix-tuning
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but allows for more fine-grained control. A control prefixes setup always uses a task-specific
prefix together with attribute-level parameters conditioned on datapoint-level information. In
this section we explain the concept of control prefixes before transferring them to a multilingual
setting. As Table 5.3 shows, control prefixes are deployed with a similar number of parameters
as prefix-tuning.

A control prefixes setup is very similar to the prefix-tuning approach described in the previ-
ous section. All pre-trained language model parameters are frozen and a small MLP is trained
that computes a sequence of continuous tokens. These tokens are then prepended to the actual
input sequence allowing for a lightweight form of fine-tuning on an NLP task. However, next
to a general task prefix P✓, this approach also introduces a set of control prefixes C✓ that are
sample-specific. An example of such a piece of information could be the news domain of an
input sequence, like sport or technology.

4.4.1 Control prefixes

For each dataset Z = {hXj, Y j, Gji}j=1,...,N , Xj is a sample from a specific sequence, Y j

the corresponding label and Gj all information available about the sample. We represent the
information as an integer value, defining the category a sample belongs to. The MLP that
constructs the control prefix can use this integer value to condition on. Similar to prefix-
tuning, the parameters for the general prefix and conditional prefix are optimized through
gradient descent.

✓⇤ = argmax
✓

NX

j=1

log p(Y j|Xj, Gj;P✓, C✓,�)

Here ✓ are the parameters of the MLP defining the general prefix (P ) and control prefixes
(C). � are the frozen parameters defining the large pre-trained language model that is being
optimized.

4.4.2 Language control prefixes

We introduce the concept of language control prefixes in a multilingual setting. Instead of using
information like ‘news domain’, we condition the prefix on a language. The general part of the
prefix can then be used to represent language-agnostic task-specific data. The control prefix
can represent language specific information. This means that we now represent our dataset as
follows:

Z = {hXj, Y j, Lji}j=1,...,NX
j

Here Xj is a sample from a specific sequence, Y j the corresponding label and Lj is a
categorical integer representing the language of the label.

The bottom of Figure 2.1 shows a visualisation of this approach. The Transformer model on
the right has frozen parameters. The prefix in the centre is task-specific and language agnostic.
The language control prefixes on the left encode language-specific patterns.
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Chapter 5

Dataset, metrics and hyperparemeters

In this section we introduce the datasets used, the metrics for evaluation and the hyperparam-
eters for training. All experiments are executed on a system with 61 Gigabytes of memory
and an NVIDIA V100 Tensor Core GPU with 16 Gigabytes of memory. As a multilingual
sequence-to-sequence model we use mT5 [35]. For the architecture we use the implementation
provided by the Hugging Face Transformers library [34]. Specifically we use mT5-base, with
pre-trained weights also being provided by the Transformers library [34].

After each epoch of training one of the di↵erent methods, we generate output sequences for
our development data split. For generation we use the beam search implementation provided
by the Transformers library [34]. Beam search generates the next word that is most probable.
However, instead of greedily continuing with the selected token, it also keeps track of sequences
resulting from choosing one of the other most likely tokens. In our case, we keep track of 5
‘beams’. Beam search always finds an output sequence with a higher probability than greedy
search, but it is not guaranteed to find an optimal output.

5.1 Datasets

The two datasets used to evaluate our multilingual prefix-tuning methods are WebNLG [5] and
ToTTo [24]. To quantify the performance of our method on these datasets, we use three metrics
that find their origin in machine translation. These are BLEU, METEOR and TER.

5.1.1 WebNLG

WebNLG version 3.0 is a bilingual data-to-text dataset. It is available in both English and
Russian. The WebNLG dataset maps RDF-triples to text. An RDF triple is a set of three
entities formatted as ‘subject–predicate–object’. Each sample in the dataset consists of up
to seven RDF triples, forming a tree. Each sample has one or several corresponding target
generation texts (references) with an average length of 22.5 words. Figure 5.1 shows a snippet
of the WebNLG dataset. Notice that it is possible for a single triple set to have multiple
reference texts. This is considered upon evaluation time, comparing the generated sentence to
all available references.

The dataset was created from raw DBpedia [1] triples. The corresponding references were
gathered through crowdsourcing platforms such as Amazing Mechanical Turk. WebNLG con-
sists of samples from 16 di↵erent categories such as airport, astronaut, company or celestial
body. The amount of samples per data split can be found in Table 5.2. The test and evalua-
tion splits contain both categories that are available in the training set as well as unseen ones.
This makes it necessary for the model to learn a function that can extrapolate from only the
categories is has seen during training.
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The Russian version of WebNLG was created by a machine translation system. The English
references were translated automatically before being checked and edited through crowdsourc-
ing. This translation process was only completed for a subset of the entire dataset. As we only
use English sentences that are also present in the Russian dataset, the numbers in Table 5.2
are exactly equal.

Figure 5.1: WebNLG dataset snippet. The three triplets at the top (a) are the input data and
the sentence at the bottom (b) is the reference generation.

5.1.2 ToTTo

ToTTo is an English data-to-text dataset [24]. The dataset was created by matching Wikipedia
tables to noisy descriptions. Then, each cell that is mentioned in the description was highlighted
in the table. Matching sentences are rewritten to as clean and varied as possible. Figure 5.2
shows an example from the ToTTo dataset. The final dataset contains 120761 training samples
and 7700 development samples with corresponding labels. There is a test set available of 7700
samples that is unlabeled and requires submitting to Google in order to obtain final test results.
We use a subset of the complete ToTTo dataset. Exact split sizes can be found in Table 5.2.

ToTTo is a fully English dataset. As our method focuses on a multilingual setting, we choose
to automatically translate the target sentences from English to Dutch using a service provided
by Amazon Web Services (AWS). AWS Translate provides an easy-to-use API allowing us to
translate all training reference sequences to Dutch. Manually inspecting some examples shows
that results are close to how a native Dutch speakers would translate them. Table 5.1 shows
example translations that show how well the API is able to translate most sequences, but also
the noise it introduces.
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Figure 5.2: ToTTo dataset snippet. The final text at the bottom contains the information
highlighted in the table. The table is the input data and the final text at the bottom is the
reference generation.

English source Dutch translation
Prabhu’s first directorial film was Chennai
600028.

Prabhu’s eerste regiefilm was Chennai
600028.

The Proculus was su↵ect consul in 145, with
Decimus Junius Paetus as his colleague.

De Proculus was voldoende consul in 145,
met Decimus Junius Paetus als zijn collega.

On 2 May, Barcelona defeated Málaga 4–1 at
the Camp Nou.

Op 2 mei versloeg Barcelona Málaga 4-1 in
Camp Nou.

During the 1991 season, Allen rushed for a
career-high with 1,036 yards and 8 touch-
downs in 18 games, and passed 4,275 yards
with 24 touchdowns.

Tijdens het seizoen 1991 haastte Allen zich
naar een carrière-high met 1.036 yards en 8
touchdowns in 18 wedstrijden, en passeerde
4.275 yards met 24 touchdowns.

Table 5.1: Some example translations of English ToTTo sentences translated to Dutch using
AWS Translate.

Dataset Training Evaluation Test
WebNLG English 14630 790 1779
WebNLG Russian 14630 790 1779
ToTTo English 15000 700 700
ToTTo Dutch 15000 700 700

Table 5.2: Amount of samples for each split from both the WebNLG and the ToTTo dataset.

19



5.2 Metrics

5.2.1 BLEU

The Bilingual Evaluation Understudy Score, or BLEU, was introcuced in 2002 by Papineni et
al. [23] as a metric for automatic evaluation of machine translation. With over 18.000 citations
it is now the most popular metric for sequence-to-sequence generation tasks. BLEU is easy to
compute and correlates highly with human evaluation [23]. BLEU captures the precision of a
generated sequence compared to a reference. It uses both single words as well as n-grams to do
this. The final score is always between 0 and 1 or displayed as a percentage. The higher the
score, the better the generated sequence.

5.2.2 METEOR

The METEOR (Metric for Evaluation of Translation with Explicit ORdering) score uses uni-
gram precision and recall as a base for calculating generation quality. Banerjee et al. introduced
the metric in 2005 [2]. METEOR does not simply compare words from the generation and tar-
get sentences, but uses techniques such as stemming and finding synonyms. When overlap has
been computed using these techniques, METEOR combines precision, recall and a fragmen-
tation measure to evaluate the order of the generated sentence into a final evaluation score
between 0 and 1. The higher the final score, the better.

5.2.3 TER

Translation Edit Rate, or TER was introduced by Snover et al. in 2005 [30]. TER measures the
amount of edits that a human would have to perform on a generated sentence in order to get
one of the target sentences. Similar to BLEU and METEOR, TER produces a score between
0 and 1. However, the score indicates the amount of edits necessary, making a low score better
than a high one.

5.3 Hyperparameters

5.3.1 Fine-tuning

When fine-tuning mT5, we use the following hyperparameters. The model is fine-tuned for 10
epochs. The batch size is set to 4 and the network is updated each 3 steps. As an optimizer
AdamW [20] is used, as implemented by Hugging Face [34]. The learning rate is controlled by
a scheduler that linearly increases it from 0 to 0.0001 in 1000 steps. After these 1000 steps
it linearly decreases to 0 again until training is done. Fine-tuning mT5 requires 582.382.848
parameters to be updated as Table 5.3 shows.

5.3.2 Prefix-tuning

The prefix-tuning model generates a prefix length of 10 tokens with an embedding size of 512.
The model is trained for 25 epochs. The batch size is set to 4 and the network is updated
after each step. As an optimizer we use AdamW [20], implemented by Hugging Face [34]. The
learning rate is controlled by a scheduler that linearly decreases it from 0.3 to 0.0 over the
entire training time.
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5.3.3 Language Control Prefixes

The control prefixes model generated a general prefix of length 10, and a language specific
prefix of length 1. Each ‘token’ in this prefix has an embedding size of 512. The model is
trained for 25 epochs. The batch size is set to 4 and the network is updated after each step.
As an optimizer we use AdamW [20], implemented by Hugging Face [34]. The learning rate is
controlled by a scheduler that linearly decreases it from 0.3 to 0.0 over the entire training time.

5.3.4 Model size and training time

Table 5.3 shows an overview of the number of parameters that need to be trained for each
method. The right column also shows the estimated training time per epoch on our system.
As can be seen, prefix-tuning approach requires training only around 0.01% of the parameters
required for fine-tuning. On top of this, the training time per epoch is around three times as
fast compared to fine-tuning.

Method Trainable parameters Training time per epoch
Zero-shot 0 0 seconds
Fine-tuning 582.382.848 (for multiple languages) ±3000 seconds
Prefix-tuning 795.392 (per language) ±900 seconds
Mixed prefix-tuning 795.392 (for multiple languages) ±900 seconds
Language control prefixes 797.696 (for multiple languages) ±900 seconds

Table 5.3: Amount of trainable parameters for each method and training time per epoch. Each
method is combined with a discrete prefix so multiple languages can be used. Only prefix-
tuning uses the entire prefix for a single task and language. The training time per epoch is an
estimated average based on multiple time measurements.
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Chapter 6

Experimental evaluation

6.1 Comparing prefix-tuning with fine-tuning in a mul-
tilingual setting

In this section we compare fine-tuning mT5 to prefix-tuning as a parameter-e�cient alternative
and answer RQ1: Can prefix-tuning be used as an alternative to fine-tuning an entire multilin-
gual LM for data-to-text generation? Firstly, the technical details of both setups are explained.
Then, we introduce the di↵erent experiments that are performed. Lastly, we discuss the results
obtained from our experiments and use them to answer the research question.

6.1.1 Fine-tuning as a baseline

The original and most thorough way of optimizing mT5 for generation in a specific language is
through fine-tuning all the network parameters. For these fine-tuning experiments we train a
separate version of mT5 on WebNLG and ToTTo. We fine-tune mT5 on all available training
data from the training set before evaluating on Dutch, Russian and English. Both training and
evaluation are performed by prepending a discrete prompt to the input sequence. This way,
we can train a single model for the data-to-text task in both available languages in one of the
datasets. For all samples we prepend the discrete prompt ‘Translate Data to [Language]: ’,
where [Language] is replaced by either Dutch, English or Russian, depending on the language
of the sample being processed.

Zero-shot prompting

mT5 is also evaluated on WebNLG and ToTTo without any fine-tuning. We prepend the same
discrete prompt as when fine-tuning: ‘Translate from Data to [Language]: ’. This prompt could
guide the model without needing any additional fine-tuning. Zero-shot prompting has shown
promising results for modern language models such as T5 [28]. However, compared to T5, mt5
was not trained on any end-to-end task. Our hypothesis would thus be that adding a discrete
prefix without any fine-tuning will not show promising results.

6.1.2 Prefix-tuning

Prefix-tuning has shown great promise as an e�cient alternative to fine-tuning large language
models [18]. To show if the performance of prefixes extrapolates to a multilingual data-to-text
setting, we implement an model that generates prefixes which can then be fed to mT5.

To construct the prefix, we create a one-dimensional tensor of ascending numbers of a
specified prefix length. In our case, the prefix length is 10, resulting in a tensor with numbers
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1 to 10. Then we initialize a small neural network to turn these numbers into a continuous
prefix.

Firstly, an embedding layer takes the tensor of random numbers. This layer produces an
embedding for each ascending number in the original tensor. The embedding size is reliant on
the embedding size of the pre-trained LM, so the prefixes can be processed like actual tokens.
In our case, mT5 has an embedding size of 512. As directly optimizing this embedding layer
yields sub-optimal results [18], we reparametrize the resulting embedding by using a shallow
neural net. This network consists of a linear layer, mapping the embedding to a hidden space.
After a tanh activation function, another linear layer maps the embedding from the hidden
space to the model size again. We decided to go with a hidden layer size of 512, which is the
same as the model embedding size. However, any value can be chosen as the size of this hidden
dimension.

We firstly focus on implementing prefix-tuning for English using WebNLG. The prefix is
trained on the entire English training set without access to any Russian data. By then evaluat-
ing on the English development split, we investigate whether or not prefix-tuning is feasible at
all when a multilingual sequence-to-sequence model like mT5 is used. This process is repeated
for the Russian and Dutch language.

6.1.3 Mixed prefix-tuning

To be more parameter e�cient, a prefix can be used for both languages per dataset. This
also enables the prefix to obtain potential language-agnostic features that can be learned by
training on data in multiple languages. By adding a discrete prompt to the input sequence, we
experiment with learning a single prefix for multiple languages. This method is called mixed
prefix-tuning and is compared against prefix-tuning and fine-tuning.

The setup is very similar to the one introduced for prefix-tuning. The prefix is constructed
in exactly the same way. One di↵erence is the fact that we prepend a piece of text to each input
sequence. This discrete prompt is the same as the one we use when fine-tuning: ‘Translate from
Data to [Language]: ’. The other di↵erence is that we now train our prefix on all languages
from WebNLG and ToTTo at the same time.

6.1.4 Results

In this section we show the results to our experiments regarding fine-tuning and (mixed) prefix-
tuning. We look at the BLEU evaluation scores over training time and test scores for all intro-
duced evaluation metrics. After looking at the metrics, we qualitatively analyse the generated
sentences from each method.

Results for English

The left graph in Figure 6.1 shows the evaluation BLEU score over 25 training epochs for the
English language. Of all methods, fine-tuning the entire LM increases the performance the
fastest. Fine-tuning also converges relatively soon. This might be due to the fact that the
scheduler introduces a low learning rate relatively fast compared to the other methods. Prefix-
tuning with just English data converges the slowest. This is most likely due to the fact that the
other methods can condition on all data in combination with a discrete prompt. This makes it
slower for prefix-tuning to keep up in the beginning while just training on English data, seeing
fewer samples per epoch, albeit in the language that we evaluate on. The BLEU score of the
mixed prefix-tuning approach increases faster compared to the ‘normal’ prefix-tuning approach,
but ends up with lower scores in the long run.
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Table 6.1 shows the test performance for all di↵erent methods. It becomes instantly clear
that zero-shot prompting our model with the prompt ‘Translate from Data to English’ does
not help our pre-trained LM. These results are just as we expected. mT5 is not pre-trained
on a particular task, making it necessary for the model to be tuned on at least a few samples
before producing useful results. The BLEU score of 1.41 shows the model was able to generate
some words or phrases correctly, but we will also show through a qualitative analysis that these
results are not properly interpretable.

Similar to what we could see in Figure 6.1, Table 6.1 shows a clear di↵erence in BLEU
scores between methods. Prefix-tuning achieves the highest BLEU score. Fine-tuning follows
by a margin, a few points higher than mixed prefix-tuning. However, when looking at the
METEOR score, results are much closer. The ranking of methods is almost the same as with
the BLEU score but there is only a 0.01 di↵erence between methods. Prefix-tuning beats the
other methods just slightly. Interesting to note is that for the TER metric, fine-tuning is
extremely close to prefix-tuning. Mixed prefix-tuning clearly falls behind accoding to the TER
score.

From these results we can conclude that prefix-tuning is an excellent alternative to fine-
tuning a multilingual LM for the data-to-text task in English. These findings are similar to the
ones done by Li et al [18]. However, we are now working with a multilingual model instead of
one that is just pre-trained on English. As this leaves less flexibility for the LM in a particular
language, it was not trivial that the performance of prefix-tuning would extend to multilingual
models.

Mixed prefix-tuning shows worse performance than its ‘normal’ variant. This is probably
due to the fact that with all English training data available for these experiments, it is beneficial
to keep as many parameters as possible available for a specific language. Mixed prefix-tuning
mixes two languages in a single prefix, resulting in lower performance but fewer parameters
when applied to multiple languages. The approach still comes really close to fine-tuning the
entire network.

Results for Russian

When looking at the Russian evaluation results on the right of Figure 6.1, one thing instantly
stands out. Compared to English, for Russian it seems that all parameter-e�cient methods
do not come close to the performance of fine-tuning the LM. Fine-tuning on all data with the
discrete prompt outperforms both prefix-based methods by almost doubling the BLEU score
when evaluating on Russian data. This confirms that the findings related to prefix-tuning for
the English language do not simply extend to multilingual models. Our results when evaluating
on English are really promising for prefix-tuning, but Figure 6.1 shows that this can not just
be assumed to work for every language or model.

The conclusions from evaluation BLEU scores are confirmed when looking at the test results
in Table 6.2. Fine-tuning achieves the best results for all metrics by a large margin. For
METEOR and TER, the di↵erence is not as large as with BLEU, but still clearly visible.

Looking only at the di↵erent prefix-tuning methods, results are similar to the ones found
when evaluating on English data. Mixed prefix-tuning gets outperformed by prefix-tuning.
Especially the di↵erence in BLEU score is relatively large. However, the di↵erence in METEOR
is only 0.02 points.

Zero-shot generation using only a discrete prompt on Russian data yields worse results
compared to the English evaluation. A BLEU score of 0 suggests that the generated sequences
are nowhere close to their references. Again, this result was to be expected as mT5 was not
pre-trained on any particular task.

24



Results for Dutch

The evaluation BLEU score of the di↵erent models on the Dutch ToTTo dataset can be found
in the bottom graph of Figure 6.1. Similar to the Russian data, fine-tuning clearly outperforms
both variants of prefix-tuning. After just a single epoch of training, fine-tuning the model
already doubles the BLEU score of (mixed) prefix-tuning.

Table 6.3 shows similar findings. The test BLEU and TER scores show a clear advantage for
fine-tuning. However, just like Figure 6.1, Table 6.3 shows an interesting contrast with English
and Russian. This is the fact that mixed prefix-tuning now outperforms prefix-tuning. The
time of convergence is also much faster for mixed prefix-tuning compared to its regular variant.

An explanation for the advantage of mixed prefix-tuning could be the increased complexity
of ToTTo compared to WebNLG. This complexity implies that to generate correct sentences,
the model needs to train on more samples compared to the simpler structure of WebNLG. The
extra parameters per language that prefix-tuning o↵ers over mixed prefix-tuning are thus less
important than seeing more samples with the ToTTo structure.

Figure 6.1: BLEU Results for the WebNLG evaluation on English (left), Russian (right) and
ToTTo evaluation on Dutch (bottom). All of these methods were trained on all available data.

Method N samples BLEU METEOR TER
Zero-shot 0 1.41 0.04 0.97
Fine-tuning 13211 39.00 0.32 0.5
Mixed prefix-tuning 13211 37.53 0.32 0.57
Prefix-tuning 13211 42.88 0.33 0.49

Table 6.1: Test set results for the best English models trained on the entire WebNLG dataset

25



Method N samples BLEU METEOR TER
Zero-shot 0 0.00 0 0.99
Fine-tuning 13211 28.00 0.22 0.65
Mixed prefix-tuning 13211 10.94 0.14 0.81
Prefix-tuning 13211 15.71 0.16 0.75

Table 6.2: Test set results for the best Russian models trained on the entire WebNLG dataset

Method N samples BLEU TER
Fine-tuning 13211 29.72 0.58
Mixed prefix-tuning 13211 15.66 0.74
Prefix-tuning 13211 14.08 0.89

Table 6.3: Test set results for the best Dutch models trained on the entire ToTTo dataset

Qualitative analysis

Table 6.4 and Table 6.5 show some examples of generated sentences by the di↵erent methods.
The reference sentence is what the generated sentences should ideally be similar to.

The first sentence of Table 6.4 has quite a complex structure. Fine-tuning is able to capture
part of the sentence, leaving out the part about Juventus being champions. Mixed prefix-
tuning actually does include the part about Juventus being Champions, but misunderstands the
relationship between the club and league. Prefix-tuning, despite being the top performer based
on Table 6.1, also has problems conveying the exact meaning that the reference sentence has.
This example clearly shows the di�culties that language models might have with interpreting
structured data.

The second sentence in Table 6.1 is an example of prefix-tuning achieving the highest test
scores in Table 6.1. The prefix-generated sentence just misses a tiny fraction of the information
compared to the other methods. Fine-tuning misses some essential information and mixed
prefix-tuning repeats phrases and links statements together which are false.

The final sentence is an example of prefix-tuning not always being the most accurate option.
Where all other methods understand the relation between the player and the club, prefix-tuning
does not.

Table 6.5 shows three sentences generated from the ToTTo dataset in Dutch. These exam-
ples show the di�culty that regular prefix-tuning has with the language and data. For the first
sentence, prefix-tuning generates a token that is used upon pre-training time when masking
words. Whereas the other methods also struggle with this sentence, prefix-tuning stands out
negatively.

The second and third sentences show that fine-tuning is able to generate the sentences
that are most complete and closest to the truth. Prefix-tuning misses information or slightly
misinterprets it. An example is the confusion between ‘gemiddelde’ (average) and ‘highest’
(hoogste) in the second sentence. Mixed prefix-tuning is able to properly interpret most of
the meaning, but generates sentences which are grammatically incorrect (sentence 3) or miss
information like the °C in sentence 2.
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Method Generation
Reference A.C. Chievo Verona play in Serie A where Juventus FC have been

champions .
Fine-tuning A.C. Chievo Verona play in Serie A.
Mixed prefix-tuning A.C. Chievo Verona is a league where the champions are Juventus FC.
Prefix-tuning The champions of Serie A are Juventus FC and A.C. Chievo Verona.

Reference AS Roma play in Serie A which have Juventus FC as previous cham-
pions. AS Roma’s ground is in Rome, Italy and they have 70634
members.

Fine-tuning A.S. Roma’s ground is Rome, Italy and has 70634 members.
Mixed prefix-tuning The champions of Serie A are Juventus FC who have 70634 members

and are located in Rome, Italy. A.S. Roma has 70634 members and
the league is known as Serie A.

Prefix-tuning A.S. Roma has 70634 members and play in the Serie A league. Juven-
tus FC is one of the champions.

Reference Rolando Maran plays at the Vicenza Calcio.
Fine-tuning Rolando Maran plays for Vicenza Calcio.
Mixed prefix-tuning Rolando Maran is a player of the Vicenza Calcio club.
Prefix-tuning The Vicenza Calcio club is Rolando Maran.

Table 6.4: Manually selected generated sentences from the English WebNLG dataset. The
models were trained on all English and Russian samples.

Method Generation
Reference In 2006 reed Solberg bij de OMV Peugeot Noorwegen de Peugeot 307

WRC in 16 WRC-rondes.
Fine-tuning In 2006 reed Henning Solberg in de Peugeot 307 WRC voor OMV

Peugeot Norway.
Mixed prefix-tuning In 2006 won Henning Solberg een Peugeot 307 WRC en een Ford

Escort WRC.
Prefix-tuning ¡extra id 0¿ Peugeot 307 WRC en een Subaru Impreza WRC.

Reference De recordhoge temperatuur in San Diego bedroeg 111° F (44° C) in
september.

Fine-tuning De hoogste temperatuur van San Diego was 111° F (44° C) in septem-
ber.

Mixed prefix-tuning The Climate of San Diego heeft een gemiddeld °F (°C).
Prefix-tuning De gemiddelde temperatuur van San Diego is 111,1 °F.
Reference Idina Menzel werd in 2010 genomineerd voor Choice Music: Group for

Glee en in 2014 voor Choice Music: Single.
Fine-tuning Idina Menzel werd genomineerd voor Choice Music Group (2010), Glee

(2014) en Choice Music Single (2014).
Mixed prefix-tuning In 2010 won Menzel de Grammy-nominatie voor Choice Music: Group,

Glee en Choice Music: Single.
Prefix-tuning In 2014 kreeg Idina Menzel de Teen Choice Awards.

Table 6.5: Manually selected generated sentences from the Dutch ToTTo dataset. The models
were trained on all Dutch and English samples.
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6.1.5 Discussion

In this section, we discuss RQ1: Can prefix-tuning be used as an alternative to fine-tuning an
entire multilingual LM for data-to-text generation?.

Firstly, in the English WebNLG setting, prefix-tuning actually outperforms fine-tuning. As
prefix-tuning is also a more parameter e�cient method, it seems to be a very solid alternative to
fine-tuning. This extends the findings from Li et al. [18] to a setting where mT5 is used instead
of a single-language model. The qualitative analysis confirms that although the generated
results are not perfect, prefix-tuning certainly is not inferior to fine-tuning.

However, looking at the test scores of prefix-tuning for Russian WebNLG and Dutch ToTTo
data suggests a di↵erent conclusion. Fine-tuning outperforms the more e�cient prefix-tuning
methods by a large margin. When inspecting some generated sentences from the Dutch dataset,
the quality for regular prefix-tuning is confirmed to be much worse than fine-tuning. Mixed
prefix-tuning generations are closer to the target sentences than prefix-tuning, which is con-
firmed by the test metrics. These varying results could be due to the complex nature of the
Dutch ToTTo dataset, or to the fact that mT5 could be equipped di↵erently for English gen-
eration tasks compared to other languages.

In conclusion, prefix-tuning can definitely be used as a parameter-e�cient way of adapting
a multilingual model for the data-to-text generation task. However, results may vary widely
based on input data structure, choice of multilingual model and output language. Prefix-tuning
generations may still be closer to the target than suggested by quantified metrics. Based on
our experiments, prefix-tuning should definitely be employed for a WebNLG task in English.
For Russian WebNLG-like data, prefix-tuning could be considered after inspecting generation
results and deciding on the tradeo↵ between e�ciency and generation accuracy. For the Dutch
ToTTo dataset, mixed prefix-tuning would be a preferred over regular prefix-tuning. Based on
our qualitative analysis, mixed prefix-tuning is not clearly inferior to fine-tuning.

6.2 Prefix-tuning and fine-tuning in low-resource scenar-
ios

The experiments performed in the previous section have shown that prefix-tuning can be used
as an alternative to fine-tuning in some multilingual settings. For the English language, per-
formance was really close, whereas prefix-tuning for Russian and Dutch falls behind to regular
fine-tuning. In this chapter we introduce similar experiments for low-resource scenarios. Firstly,
we explain the di↵erent experiments and how we set up fine-tuning and prefix-tuning for these
low-resource settings. Then, using the obtained results, we answer RQ2: How does prefix-tuning
perform compared to fine-tuning on a data-to-text task in multilingual low-resource scenarios?

The experiments for the low-resource settings are performed using both WebNLG and
ToTTo. As both datasets are available in two languages, we select one language from each
dataset to be low-resource. These low-resource languages will be used for quantitative and
qualitative evaluation to answer RQ2. As the authors of this thesis are proficient in English
and Dutch, those languages are treated as low-resource. This allows for a proper qualitative
analysis of the generation results without the need for a Russian translator. In all WebNLG
experiments, Russian is treated as a high-resource language. For ToTTo, English is the high-
resource language.

6.2.1 Low-resource methods setup

Both fine-tuning and prefix-tuning take place on the entire Russian WebNLG dataset and
additionally on a small English part. The amount of English data used is varied to see how
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performance changes in low-resource settings. We will experiment with low-resource amounts
of 200 and 500. This means that each epoch, mT5 is fine-tuned on all Russian samples and
200 or 500 samples in English. Evaluation is performed on the generation results of the entire
English development set.

This process is repeated for the ToTTo dataset, but with Dutch as a low-resource language.
For ToTTo we experiment with a Dutch dataset of 200 samples, used in combination with the
entire available training set in English. Evaluation is performed on the generation results of
the entire Dutch development set.

The setups for both fine-tuning and prefix-tuning are similar to the settings without data
restrictions. This includes the use of the discrete prompt to create a mixed prefix approach.
The construction of the prefix is done by embedding a tensor of length 10 with an embedding
size of 512 and reparametrization is performed to prevent direct optimization as recommended
by Li et al [18].

6.2.2 Results

English WebNLG with 200 samples

When looking at the left graph in Figure 6.2, it becomes clear that fine-tuning does not achieve
the highest performance in this setting. After a few epochs of training, the model converges to
a BLEU score that’s relatively low compared to mixed prefix-tuning. The fact that mT5 has a
huge number of parameters probably makes it hard for the model to optimize these e�ciently
when only 200 samples are available.

Another thing that stands out in Figure 6.2 is the fact that prefix-tuning clearly performs
the worst of all methods. Where fine-tuning and mixed prefix-tuning have access to the entire
Russian training set, prefix-tuning relies on only 200 English samples. This makes it extremely
hard to generalize to the evaluation set, resulting in low BLEU scores, even as training pro-
gresses.

Table 6.6 shows that despite a high test BLEU score, fine-tuning actually gets outperformed
by mixed prefix-tuning for the METEOR metric. Interesting to note is the extremely low
METEOR score of fine-tuning compared its BLEU and TER.

The two method that stand out in this low resource setting is mixed prefix-tuning. The
approach is able to e�ciently make use of the provided Russian data. On top of this, it has
few enough parameters to e�ciently optimize for the English language using the available 200
samples.

Dutch ToTTo with 200 samples

The graph on the right of Figure 6.2 shows the BLEU evaluation performance for our methods
when training ToTTo on 200 Dutch, and all English samples. Compared to the WebNLG setting
with 200 samples, it stands out that fine-tuning clearly outperforms mixed prefix-tuning. This
might be due to the more complex structure of ToTTo data, requiring more parameters to
achieve a high BLEU score. This would explain the di�culties that a prefix with an extremely
limited amount of parameters could have, especially in a low-resource setting.

Regular prefix-tuning clearly falls behind, achieving extremely low scores. This is even
the case compared to the WebNLG setting, where prefix-tuning scores were already low. The
di�culties of (mixed) prefix-tuning in this Dutch ToTTo setting are confirmed when looking at
the test results in Table 6.8. For both TER and BLEU, fine-tuning outperforms both prefix-
tuning methods.
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English WebNLG with 500 samples

The right of Figure 6.2 shows the evaluation BLEU score for training WebNLG on 500 English
samples. The main di↵erence with the graph for 200 samples is the performance of fine-tuning.
Similar to the setting with 200 ToTTo samples, mixed prefix-tuning is not able to match the
performance of fine-tuning.

Similar to both other settings, is the fact that the line for prefix-tuning stays below all the
other methods. However, it increases to a BLEU value above 5, compared to staying around 1
with only 200 samples. Without using any high-resource data, the prefix is not able to properly
compete with the other methods.

These findings are confirmed when looking at the optimal models evaluated on the test set in
Table 6.7. Interesting to note is the fact that in terms of BLEU, fine-tuning achieves a relatively
much higher score compared to the other methods. However, when looking at the METEOR
and TER metrics, the results are much closer. Mixed-prefix tuning even outperforms fine-tuning
on the METEOR metric. As expected based on the other two settings, regular prefix-tuning
performs worst in a low-resource setting with only low-resource samples available.

Figure 6.2: BLEU results for the WebNLG evaluation on 200 English samples (left), 500 English
WebNLG samples (right) and 200 Dutch ToTTo samples (bottom).

Method N samples BLEU METEOR TER
Fine-tuning 200 5.91 0.07 0.82
Mixed prefix-tuning 200 19.50 0.21 0.75
Prefix-tuning 200 0.63 0.05 0.99

Table 6.6: Test set results for the best models trained on 200 English WebNLG samples
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Method N samples BLEU METEOR TER
Fine-tuning 500 31.77 0.13 0.76
Mixed prefix-tuning 500 19.58 0.19 0.77
Prefix-tuning 500 6.32 0.14 0.83

Table 6.7: Test set results for the best models trained on 500 English WebNLG samples

Method N samples BLEU TER
Fine-tuning 200 17.98 0.78
Mixed prefix-tuning 200 12.16 0.84
Prefix-tuning 200 0.05 0.99

Table 6.8: Test set results for the best models trained on 200 Dutch ToTTo samples

6.2.3 Qualitative analysis

In this section we qualitatively analyse the same sentences as we did for the high-resource
settings from the previous section. Table 6.9, Table 6.10, Table 6.11 show the English WebNLG
generation settings with 200 and 500 samples, and the Dutch ToTTo setting with 200 samples.

Table 6.9 firstly shows that regular fine-tuning has di�culties generating sentences in the
correct language. Because the model was fine-tuned on mostly Russian and just 200 English
samples, the discrete prompt is not enough to clearly signal to the model that the ouput should
be generated in English.

Mixed prefix-tuning is better at generating English sentences. However, the structure of
these sentences is messy and often incorrect. Phrases like ’numberOfMembers’ in the second
sentence are literally copied from the input structure without properly generating a phrase.
And the same phrase is repeated three times in that same sentence. Relations between entities
are also not properly processed, as Chievo is not a champion the Serie A, and Rolando Maran
is not a club.

Prefix-tuning on just the 200 provided English samples is clearly not enough to learn the
model how to interpret the input structure. The model outputs clear nonsense, something that
was already visible in the test metrics in Table 6.6.

Increasing the amount of low-resource data to 500 shows clear benefits for the regular prefix-
tuning approach. Table 6.10 shows that instead of producing nonsensical text, prefix-tuning
now generates readable text. However, the sentences often still do not make sense in terms
of truthfulness. Both fine-tuning and mixed prefix-tuning also still struggle with generating
reasonable texts. Mixed prefix-tuning now has the issue of generating sentences in Russian.
This might be a unavoidable issue for low-resource setting where the model is also trained on
high-resource data. Interesting to note is that fine-tuning generates short sequences, explaining
the high scores found in Table 6.7. However, these short sentences are not complete in terms
of conveying all meaning form the input data.

Lastly, Table 6.11 shows some Dutch generation results after training on 200 Dutch samples
from the ToTTo dataset together will all English samples. The patterns that can be observed are
actually really similar to the ones found for the English low-resource setting with 200 samples
from Table 6.9. Prefix-tuning generates mostly nonsensical tokens or characters.Despite a
significant di↵erence in test scores, mixed prefix-tuning and fine-tuning are not that di↵erent
based on qualitative analysis of these samples. Most relevant information can be found in the
sequences from mixed prefix-tuning, despite fine-tuning showing a better grammatical quality.
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Method Generation
Reference A.C. Chievo Verona play in Serie A where Juventus FC have been

champions .
Fine-tuning

Russian text. Find exact generation in Figure A.1.
Mixed prefix-tuning Serie ”A” is a league where Chievo is a champion.
Prefix-tuning extra id 0. extra id 1...... (continues...)

Reference AS Roma play in Serie A which have Juventus FC as previous cham-
pions. AS Roma’s ground is in Rome, Italy and they have 70634
members.

Fine-tuning
Russian text. Find exact generation in Figure A.1.

Mixed prefix-tuning ”Roma” has numberOfMembers 70634. The team has numberOfMem-
bers 70634. The team has numberOfMembers 70634.

Prefix-tuning extra id 0 A.S Roma extra id 1 extra id 2. (continues...)

Reference Rolando Maran plays at the Vicenza Calcio.
Fine-tuning

Russian text. Find exact generation in Figure A.1.
Mixed prefix-tuning Rolando Maran is a club in Vicenza.
Prefix-tuning extra id 0/ / / / / / / / / / /. (continues...)

Table 6.9: Manually selected generated sentences from the English WebNLG dataset. The
models were trained on 200 English samples and all available Russian samples.

Method Generation
Reference A.C. Chievo Verona play in Serie A where Juventus FC have been

champions .
Fine-tuning A.
Mixed prefix-tuning - champion of Chievo Verona.
Prefix-tuning Juventus Football Verona is a Serie A. C. Chievo Verona.

Reference AS Roma play in Serie A which have Juventus FC as previous cham-
pions. AS Roma’s ground is in Rome, Italy and they have 70634
members.

Fine-tuning The league of A.
Mixed prefix-tuning

Russian text. Find exact generation in Figure A.1.
Prefix-tuning A.S. Roma is a Serie A’s champions.

Reference Rolando Maran plays at the Vicenza Calcio.
Fine-tuning The Vicenza Calcio.
Mixed prefix-tuning

Russian text. Find exact generation in Figure A.1.
Prefix-tuning Rolando Maran’s club is Vicenza Calcio.

Table 6.10: Manually selected generated sentences from the English WebNLG dataset. The
models were trained on 500 English samples and all available Russian samples.

32



Method Generation
Reference In 2006 reed Solberg bij de OMV Peugeot Noorwegen de Peugeot 307

WRC in 16 WRC-rondes.
Fine-tuning In 2006 werd Henning Solberg de Peugeot 307 WRC in OMV Peugeot

Norway.
Mixed prefix-tuning Peugeot rijdt in 2006 met een Peugeot 307 WRC en een Peugeot 307

WRC.
Prefix-tuning extra id 0. extra id 1...... (continues...)

Reference De recordhoge temperatuur in San Diego bedroeg 111° F (44° C) in
september.

Fine-tuning The gemiddelde temperatuur van San Diego is 111 °F (44 °C).
Mixed prefix-tuning The gemiddelde temperatuur in San Diego is 111 °F (°C).
Prefix-tuning extra id 0 Xbox Xbox Xbox (continues...)

Reference Idina Menzel werd in 2010 genomineerd voor Choice Music: Group for
Glee en in 2014 voor Choice Music: Single.

Fine-tuning Idina Menzel won twee awards voor Choice Music Group (2010), Glee
(2014) en Choice Music Single (2014).

Mixed prefix-tuning In 2010, Idina Menzel kreeg de Award voor Choice Music: Group en
2014 voor Choice Music: Single.

Prefix-tuning extra id 0 Idina Menzel: extra id 1 (continues...)

Table 6.11: Manually selected generated sentences from the Dutch ToTTo dataset. The models
were trained on 200 Dutch samples and all available English samples.

6.2.4 Discussion

In this section, we discuss RQ2: How does prefix-tuning perform compared to fine-tuning on a
data-to-text task in multilingual low-resource scenarios?.

Firstly, regular prefix-tuning struggles greatly in low-resource settings as it has no access
to an alternative high-resource language. This method can not be used as an alternative to
fine-tuning.

Learning a prefix with both a high and low-resource language through mixed prefix-tuning
shows much more promising results. In the English setting with 200 samples, mixed prefix-
tuning is able to outperform fine-tuning by a large margin. Qualitative analysis confirms
that mixed prefix-tuning is the only method able to generate proper sentences in this setting.
However, when applied to di↵erent settings, fine-tuning takes over as the method with the
highest test scores for most metrics. These di↵erences are often rather small, especially for the
English WebNLG task, and not clearly visible through the qualitative analysis of generated
sequences.

We conclude that mixed prefix-tuning is not a guarantee for outperforming regular fine-
tuning. However, the method speeds up training time and needs only 0.01% of the parameters
required for fine-tuning. Given the fact that for some settings performance of mixed prefix-
tuning is similar to fine-tuning or even better, it should be considered as an e�cient alternative
to fine-tuning in low-resource settings.
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6.3 Language control prefixes for more e↵ective multi-
lingual prefix-tuning

In the previous sections we introduced (mixed) prefixes in a multilingual setting. Then we
took those approaches to a low resource setting. In this section, we introduce language control
prefixes. These type of prefixes partly condition on the current language being processed.
This language-specific part is combined with a language-agnostic part, allowing for a clearer
separation between language and task. Intuitively, the language specific part is similar to a
discrete prompt introduced in the previous sections. However, by optimizing the prompt as a
continuous prefix, we hope to give the model more control over its generations.

In this section, we introduce the technical setup of language control prefixes. We then
test the control prefixes performance on all tasks previously performed. Using the obtained
results, we answer RQ3a: To what extent can language control prefixes be used as a parameter-
e�cient alternative to general prefix-tuning? and RQ3b: To what extent can using language
control prefixes lead to an increase in performance in low-resource scenarios compared to general
prefix-tuning?

6.3.1 Language control prefixes setup

The architecture that generates a control prefix is very similar to one used for prefix-tuning.
Control prefixes uses a tiny fraction more parameters (797.696) compared to prefix-tuning
(795.392), as Table 5.3 shows.

Just like with prefix-tuning, control prefixes first initializes a tensor containing an ascending
range of numbers from 1 to the prefix length. This tensor will be used to construct the general
part of the prefix. The control prefix does not require any sort of initialization, as it uses an
integer defined by the language to condition on.

The general prefix and control prefixes information both have their own embedding layer.
These layers map the one-dimensional tensors to an embedding of size 512, the embedding
size of mT5. These embeddings are then concatenated, to create a final prefix combining the
general information of the task at hand with language-specific information from the control
prefix. Again, directly optimizing these embeddings is sub-optimal, so an MLP is defined
to reparametrize the total prefix. The MLP again consists of a hidden layer mapping to an
embedding size of 512, a tanh activation function and a final linear layer creating the embedding
that is fed to the language model. Figure 6.3 shows a simplified overview of the model that
creates the language control prefixes.
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Figure 6.3: Simplified representation of the language control prefixes model. One embedding is
conditioned on the language of the sample that is processed. The other embedding is created
by the same ascending integers for each sample. These embeddings are concatenated and then
reparametrized by an MLP.

We perform the language control prefixes experiments using both WebNLG and ToTTo. To
properly compare the performance to the experiments from the previous sections, we introduce
both low-resource and high-resource scenarios. For WebNLG we train the model on all available
Russian samples and 200, 500 or all English samples. For ToTTo, we only have two setups, one
with all Dutch samples and one with 200. The ToTTo setup always has access to all English
samples.

6.3.2 Results

The graphs shown below are the same as the ones introduced in the previous sections, with the
addition of the language control prefixes setup. The same goes for the di↵erent tables, where
all greyed out results are from previous sections. The bottom row shows the results introduced
in this section.

Language control prefixes in a high-resource setting

Figure 6.4 shows the three high-resource settings in which we experimented with language
control prefixes. The English and Russian ones (left and right) are both based on WebNLG
data, whereas the Dutch graph (bottom) is from the ToTTo dataset.

For both English and Russian, control prefixes has a similar evaluation BLEU score to nor-
mal prefix-tuning. This is noteworthy, because normal prefix-tuning requires a dedicated prefix
for a single language, whereas control prefixes can condition on multiple ones. Mixed-prefix
tuning struggled with representing data from multiple languages in a single prefix, resulting in
worse performance compared to regular prefix-tuning.

It was to be expected that with all data available, control prefixes would perform similar
to mixed prefix-tuning. However, the continuous optimizable conditional prompt seems to
outperform a predefined discrete prompt. Using control prefixes is more parameter-e�cient
than training a separate prefix for each language.

For Dutch ToTTo data, control prefixes seems to underperform compared to the other
prefix-tuning methods. The added complexity of a conditional prefix in combination with a

35



more complex dataset actually causes the model to learn barely anything until after 12 epochs
of training. The predefined prompt of mixed prefix-tuning helps the model in learning the data
structure almost instantly before gradually increasing.

The findings from the evaluation BLEU scores in Figure 6.4 are confirmed when looking at
the test scores in Table 6.12, Table 6.13 and Table 6.14. In the WebNLG setting for English,
control-prefix is on a similar level as prefix-tuning, even outperforming the method when it
comes to the METEOR score.

For the Russian WebNLG setting described in Table 6.12, language control prefixes clearly
gets outperformed by fine-tuning. However, the performance is again very close to that of prefix-
tuning. For all three metrics, the di↵erences are extremely small. One should consider here
that control prefixes can scale to multiple languages more e�ciently, requiring fewer parameters
per language.

Table 6.14 shows that for this more complex task in Dutch, control prefixes is not able
to match the performance of fine-tuning and other prefix-tuning methods for most metrics.
Interesting to note is that control prefixes does outperform regular prefix-tuning for the TER
metric. However, mixed prefix-tuning beats both other methods on all three metrics.

Figure 6.4: BLEU Results for the WebNLG evaluation on English (left), Russian (right) and
ToTTo evaluation on Dutch (bottom). All of these methods were trained on all available data.

36



Method N samples BLEU METEOR TER
Zero-shot 0 1.41 0.04 0.97
Fine-tuning 13211 39.00 0.32 0.5
Mixed prefix-tuning 13211 37.53 0.32 0.57
Prefix-tuning 13211 42.88 0.33 0.49
Control prefixes 13211 42.09 0.34 0.51

Table 6.12: Test set results for the best English models trained on the entire WebNLG dataset

Method N samples BLEU METEOR TER
Zero-shot 0 0.00 0 0.99
Fine-tuning 13211 28.00 0.22 0.65
Mixed prefix-tuning 13211 10.94 0.14 0.81
Prefix-tuning 13211 15.71 0.16 0.75
Control prefixes 13211 14.76 0.16 0.73

Table 6.13: Test set results for the best Russian models trained on the entire WebNLG dataset

Method N samples BLEU TER
Fine-tuning 13211 29.72 0.58
Mixed prefix-tuning 13211 15.66 0.74
Prefix-tuning 13211 14.08 0.89
Control prefixes 13211 12.38 0.85

Table 6.14: Test set results for the best Dutch models trained on the entire ToTTo dataset

Language control prefixes in a low-resource setting

Figure 6.5 shows that for all experimental settings, control prefixes follows a similar trajectory
as mixed prefix-tuning. For both English WebNLG settings, control prefixes outperforms mixed
prefix-tuning clearly. As more data becomes available in the scenario with 500 samples, this
di↵erence becomes bigger.

Similar to what we saw in the high-resource setting is the fact that control prefixes seem to
struggle with the ToTTo dataset in Dutch. As the structure of this dataset is more complex,
learning a continuous conditional prefix might be harder than just using a discrete prompt.

These findings are also reflected in Table 6.15, Table 6.16 and Table 6.17. The test result
for English WebNLG data show language control prefixes as the best performer over mixed
prefix-tuning. In Table 6.15, only the METEOR metric is the same for both of these methods.
TER and BLEU show a clear advantage for control prefixes. As Table 6.16 shows, increasing
the amount of available data also shows a di↵erence for the METEOR metric.

The test results on Dutch ToTTo in Table 6.17 show that control prefixes does not come
close to the performance of fine-tuning. Both TER and BLEU are also lower compared to
mixed prefix-tuning, confirming what we observed in Figure 6.5.
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Figure 6.5: BLEU results for the WebNLG evaluation on 200 English samples (left), 500 English
WebNLG samples (right) and 200 Dutch ToTTo samples (bottom).

Method N samples BLEU METEOR TER
Fine-tuning 200 5.91 0.07 0.82
Mixed prefix-tuning 200 19.50 0.21 0.75
Prefix-tuning 200 0.63 0.05 0.99
Control prefixes 200 23.03 0.21 0.70

Table 6.15: Test set results for the best models trained on 200 English WebNLG samples

Method N samples BLEU METEOR TER
Fine-tuning 500 31.77 0.13 0.76
Mixed prefix-tuning 500 19.58 0.19 0.77
Prefix-tuning 500 6.32 0.14 0.83
Control prefixes 500 31.97 0.20 0.68

Table 6.16: Test set results for the best models trained on 500 English WebNLG samples

Method N samples BLEU TER
Fine-tuning 200 17.98 0.78
Mixed prefix-tuning 200 12.16 0.84
Prefix-tuning 200 0.05 0.99
Control prefixes 500 10.21 0.95

Table 6.17: Test set results for the best models trained on 200 Dutch ToTTo samples
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6.3.3 Qualitative analysis

Similar to our (mixed) prefix-tuning approaches in all di↵erent settings, we also perform a
qualitative analysis of the language control prefixes setup. Table 6.18 and Table 6.19 show
these results.

Table 6.18 displays that language control prefixes are able to generate sensible sequences in
all di↵erent WebNLG settings. However, the fewer amount of samples the model has available,
the less grammatically correct the output sequences become. For example, results have small
mistakes like ‘is’ instead of ‘are’. Interesting to see is that for the final sentence, the model
generates a ‘-’ instead of a proper sentence. The ‘-’ still portrays the meaning of the sequence
correctly, but is not what is expected from such a model.

The Dutch ToTTo generations showed in Table 6.19 have a similar pattern as the English
ones. All sequences are sensible without showing masking tokens or changes in language like
low-resouce settings from the other methods do. Interesting to note is that for these three
particular sentences, the di↵erence in quality between the low- and high-resource settings is
almost nonexistent.

Setting Generation
Target A.C. Chievo Verona play in Serie A where Juventus FC have been

champions.
WebNLG English A.C. Chievo Verona is the champion of Serie A.
WebNLG English 200 Fiorentina FC Chievo Verona is champions in Serie A.
WebNLG English 500 Chievo Verona champions of the Serie A.

Target AS Roma play in Serie A which have Juventus FC as previous cham-
pions. AS Roma’s ground is in Rome, Italy and they have 70634
members.

WebNLG English A.S. Roma’s ground is Rome, Italy and have 70634 members. The
champions are Juventus F.C.

WebNLG English 200 Serie A (Serie A) - champions of Serie A.
WebNLG English 500 a league of the Serie A is located in Rome, Italy.

Target Rolando Maran plays at the Vicenza Calcio.
WebNLG English Vicenza Calcio is the club of Rolando Maran.
WebNLG English 200 Rolando Maran - Vicenza Calcio.
WebNLG English 500 Rolando Mara’s club is Vicenza Calcio.

Table 6.18: Manually selected generated sentences from language control prefix generations
on the English WebNLG dataset. The models were trained on either all, 200 or 500 English
samples and all Russian samples.
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Setting Generation
Target In 2006 reed Solberg bij de OMV Peugeot Noorwegen de Peugeot 307

WRC in 16 WRC-rondes.
ToTTo Dutch OMV Peugeot Norway. Henning Solberg heeft een Peugeot 307 WRC

en een Subaru Impreza WRC. Henning Solberg heeft een Peugeot 307
WRC.

ToTTo Dutch 200 In 2006 debuteerde Henning Solberg in Peugeot 307 WRC.

Target De recordhoge temperatuur in San Diego bedroeg 111° F (44° C) in
september.

ToTTo Dutch The gemiddelde temperatuur in San Diego is 111,44 graden.
ToTTo Dutch 200 The gemiddelde temperatuur in San Diego is °F (°F) and °F (°F).
Target Idina Menzel werd in 2010 genomineerd voor Choice Music: Group for

Glee en in 2014 voor Choice Music: Single.
ToTTo Dutch In 2010 won Idina Menzel de Teen Choice Awards.
ToTTo Dutch 200 In 2010 kreeg Idina Menzel een nomination voor de Teen Choice Awards.

Table 6.19: Manually selected generated sentences from language control prefix generations on
the Dutch ToTTo dataset. The models were trained on either all or 200 Dutch samples and all
available English samples.

6.3.4 Discussion

In this section, we discuss RQ3a: To what extent can using language control prefixes lead to
an increase in performance in low-resource scenarios compared to general prefix-tuning?. Then
we answer RQ3b: To what extent can using language control prefixes lead to an increase in
performance in low-resource scenarios compared to general prefix-tuning?.

To answer RQ3a, language control prefixes can be used as a parameter-e�cient alternative
to general prefix-tuning. Language control prefixes outperforms all other prefix-tuning methods
in 2 of our 3 high-resource settings in terms of test metrics. Manual inspection of generated
sentences shows a similar conclusion, with all sentences being at least sensible, albeit not always
fully truthful. An exception is the Dutch ToTTo setting where control prefixes performs worse
than all other prefix-tuning methods. However, the qualitative analysis of the results shows
that di↵erences are really small in terms of generation quality and training for more epochs
with more available parameters might close the gap.

Language control prefixes show even more potential in low-resource settings compared to
high-resource ones. To answer RQ3b, we observed that control prefixes outperform all other
methods including fine-tuning and mixed prefix-tuning in English WebNLG tasks. Only in
the Dutch ToTTo setting, regular fine-tuning is able to achieve higher test scores with control
prefixes being around the same performance as mixed prefix-tuning. In short, control prefixes
leads to an increase in performance in most low-resource scenarios compared to other prefix-
tuning methods.
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Chapter 7

Conclusion

Prefix-tuning is an extremely parameter e�cient way of modifying a language model for the
data-to-text generation task. Especially in low-resource settings, the compact representations of
these prefixes are able to perform well. Control prefixes allow regular prefixes to be conditioned
on attribute level data, allowing for a potential increase in performance.

In this work we took prefix-tuning for data-to-text to a multilingual setting. We answered
RQ1: Can prefix-tuning be used as an alternative to fine-tuning an entire multilingual LM for
data-to-text generation?, by showing that in some settings the performance of prefix-tuning
is very close to regular fine-tuning while being extremely parameter e�cient. However, the
performance of prefix-tuning is highly dependent on the exact setting in which it is deployed.

Prefix-tuning in the English data-to-text scenario shows most promising results in low-
resource scenarios. We investigated this in a multilingual setting by answering RQ2: How does
prefix-tuning perform compared to fine-tuning on a data-to-text task in multilingual low-resource
scenarios?. Mixed prefix-tuning was able to e�ciently profit from an available high-resource
language and can be used as a parameter-e�cient alternative to fine-tuning despite lacking
superior test results in some settings.

Our main contribution is the introduction of language control prefixes. By answering RQ3a:
To what extent can language control prefixes be used as a parameter-e�cient alternative to
general prefix-tuning?, we showed that language control prefixes outperform other prefix-tuning
methods in most settings. This finding was extended by answering RQ3b: To what extent can
using language control prefixes lead to an increase in performance in low-resource scenarios
compared to general prefix-tuning?. Control prefixes outperformed all other methods in most
low-resource scenarios, showing the potential of the method for multilingual data-to-text tasks.

In short, prefix-tuning is a highly e↵ective way of e�ciently adapting a pre-trained language
model for a multilingual data-to-text task. Especially in low resource settings this becomes ap-
parent. The introduction of language control prefixes takes this a step further by outperforming
all other methods in most low-resource settings.

Experimenting with language control prefixes in more settings and languages is left for fu-
ture work. By combining such research with a thorough process of hyperparameter tuning,
the impact of control prefixes on e�cient mulilingual prefix-tuning could be further analysed.
Another open question is why exactly the performance of prefix-tuning is dependent on the set-
ting where it is applied. Future research could look into language features or model limitations
that may influence the performance of prefix-tuning methods. Lastly, we propose a research
direction of more advanced prefix construction. While control prefixes already condition on
part of an input sample, more thorough approaches could be constructed. An example would
be to represent the input structure as a graph and use graph-based neural networks to compute
the final prefix.
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Appendix A

Appendix

Figure A.1: Russian sentences generated when evaluating di↵erent prefix-tuning methods.
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